DETERMINING THERMOELASTIC STRESSES IN A PLATE

A. V. Sudakov and A. S. Trofimov UDC 539.30:536.242

A method for approximate determination of thermoelastic stresses in an infinite plate is pre-
sented. With minimal complication of the problem, the proposed method yields results that
deviate from the exact solutions within the limits of computational accuracy.

Determination of the thermoelastic stresses in structural elements often reduces to investigating the
stresses in an infinite plane wall in the absence of deflection. If the plate is insulated on one side, the
maximum stresses ¢ usually appear at the surface facing the heat-transport medium, and are represented
by the familiar expression [1]
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The difficulty in employing (1) lies in finding the unsteady distribution of the temperature field T(t,x).

The analytic methods are cumbersome, since they lead to infinite series (see, for example, [2, 5]).
Numerical methods require the use of a digital computer. Simplified solutions are often required for prac-
tical purposes. Quasistationary methods are the most common [3]. They are simple in computational pro-
cedure, but deviate considerably from the exact solutions. We might refer to them as first-order approxi-
mations.

Let us look at a second-order approximation, which gives a more exact solution with minimal compli-
cations of the problem. The temperature field in a plate (Fig. 1) is described by the equation
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1=0, T=0. (2c)
We assume that the release of heat does not depend on the spatial coordinate (although this is not a
fundamentally necessary assumption),

After integrating (2) with respect to z from 0 to 1, and using the boundary conditions, we obtain
Tt @ T~ B0 O+, ®)

=0, Tay=0. (2d)

The second relationship between T,y and T4 can be established from the same equation (2), but with the
aid of a boundary condition of the first kind: ‘

z=1 T=T, (3. (@e)
We use a Laplace transform to solve (2), (2a), (2¢), (2e) and obtain
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where ® =thvs/Vs; F =1/s[1—thVs/Va] are the transfer functions for the temperature and the heat release.
We replace the exaft transfer functions by approximate rational functions. One of the simplest ways of
doing this is to synthesize a system in the region of imaginary frequency responses [4], i.e., for real values

of the parameter (0 =s < )., Figure 2 shows the functions fI_>(s) and F(s). The approximate values of the
transfer functions are represented as
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Figure 2 shows gap and —P:ap for the following parameter values:
A=043, B=0.1, C =001, D =1/30, £ =1/3, (6)
selected on the basis of the recommendations given in [4].

By using the rational form of (5), we can obtain a second-order ordinary differential equation with con-
stant coefficients for the unknown temperatures T, and Tg; together with (1), (3), this yields a closed sys-
tem that solves the problem: :
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If we wish to allow for the way in which the heat-transfer coefficient depends on the time g(7), it is
best to solve the problem in the form (7). If we take B = const, the system becomes simpler. Here we
must eliminate T, and T4 from (7); we then obtain an equation in the unknown stresses o:
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—_——2 Let us now compare our solution with the known exact solution [5]
\ ——7 and quasistationary solution [3] for a linear variation (see Fig. 3) in the
95 Y temperature ©(7) of the heat-transport medium, and g = 0. When g — «
\\ , (the most severe case), we obtain different values of the maximum di-
‘ L mensionless stresses, depending on the rate of change of the tempera-
425 N ture,d®@/dr = AT /7*
\§‘
1 The "parabolic" quasistationary approximation [3] gives
dd
0 g6 2 8 ™ .

Fig. 3. Dependence of 01 5%
on Fourier criterion: 1) ex-
act solution; 2) solution by

Eq.(9); 3)solutionby Eq. (10).

Oy = o [1—exp (— 3T)], 9
3t*

From the second-order approximation (8) we obtain

s = 9318 1y 0155 0.0155exp (—40.50%) — exp(—2.57%)]. (10)
ac*

Figure 3 shows o

*
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given; the exact values were found from the Fritz solution [5].
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3. P. Timoshenko, Strength of Materials [in Russian], Gostekhizdat (1946).

NOTATION

the stress;

the time;

the dimensionless time;

the coordinate normal to the plate surface;
the plate temperature;

the average plate temperature;

the temperature of the plate surface;

the temperature of the heat-trangport medium;
the plate thickness;

the modulus of elasticity;

the Poisson ratio;

the coefficient of linear expansion;

= tya/h?, q =hlqy/2;

the thermal diffusivity;

the bulk heat release;

the heat-transfer coefficient.
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